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1.0 USER GUIDE

1.1 INTRODUCTION

This document is an overview of the MRC benchmark code SPHC, a smooth particle
hydrodynamics code that is intended to be a testing arena for the SPH technique. The
code is ANSI C compatible, and should run on any standard compiler. In addition to the
routines described below, the system utilizes a variety of external functions and
data-base interfaces for I/O, file maintenance, and graphics post-processing.

The SPHC package is an unusual hydro code in several respects. It is written in C and
takes full advantage of the versatility and conciseness possible in this language, while
maintaining a simple, FORTRAN-like style throughout. The emphasis at this stage of
code development is simplicity and clarity rather than fully optimized performance. The
basic algorithm is very simple and can be coded in about 100 lines of code. Unfortu-
nately, the simplest approach requires O(N 2) run time scaling, where N is the number of
particles, and this is unacceptable for most serious applications. In SPHC a sophisticated
tree-structured particle location technique is used to overcome this problem.

1.2 USING SPHC

SPHC has been implemented on several different environments, both PC and mainframe,
and can be compiled on several different compilers as well. See the Programmers' Guide
for setup procedures and allowable systems.

To run a problem on SPHC, the code module sph-init.c must be modified to initiate the
desired setup conditions. For standard types of problems, setup menu code can be
included in the setup routine, so a recompile is not needed for each run. The code is
executed by typing sphc" from the /sph/code directory. This results in a series of
standard setup screens appearing on the terminal (see Section 6) to allow parameter
adjustment. Usually, the default values will be adequate. Continued use of the "F l " key,
as indicated at the bottom of the menu box, will accept all of the default values. The
problem should then run, and print a step-by-step summary of the run's progress. The
format of this summary is:
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CYLINDRICAL PROBLEM

>>>STEP 0. TIME = 0. DT = 0
KE=0.000e000. TE=7.051e 023, PE=4.063e+022. Echeck=0.00 % / f:0

dt-fl - 1.000e+050/0 dt-hy = 4.011e-001/16 dtgr = 6.216e+000/85
Error-0.000O00, Courant mult=.00e-001. r=0.00e000. dt-fact=1.00e000

...writing new data to /sdat/s.0.. .done

>>>STEP 1, TIME - 0.000e+000. DT a 1.203e-002, visc - 0.000e000/O/O
KE-2.380e*018. TE=7.0519 023, PE=4.063e+022. Echeck=-0.00 % / f:0
dt.f1 = 3.913e+001/17 dt.hy = 3.165e-001/16 dtgr = 6.216e 000/85

Error-4.98e-005. Courant multzl.90e-001. r-4.98e-002. dt-fact=1.50e0O00

The information shown includes: time, timestep, viscosity (ratio of the viscous pressure
to the thermal pressure), kinetic, thermal and potential energies, energy check, f=number
of eos faults, timesteps (list will depend on physics of the problem, includes flow, hydro,
gravity, thermal diffusion), Error = the current Runge-Kutta error estimate,
Courant-mult = fraction of the Courant timestep for the current dt, r = ratio of the
error to the target error desired, dtlfact = the timestep adjustment factor. Also shown is
the current i/o, such as files written, etc. Some quantities are followed by a slash and a
particle number representing the strongest contribution. A tone will sound at the
conclusion of the problem.

The code may also be initialized completely from data input. In this case an editor is
used to specify the set of parameters desired in a data file, and the command form "sphc
p" will read this file for values rather than using the menus, while obtaining the problem
specific parameters and particle setup from the sph-init routine. Finally, a problem may
be started completely from data in the form of restsrt dumps. Here a parameter file and
a particle data file are required, and the form of the command is "sphc r". See Section 3
for further details.

1.2.1 Data Structures

Specialized data structures are used to organize storage. A data type "vector" is defined
as three real numbers (x,y,z), and the module vect3.c contains the vector functions that
form the foundation of all computations. A data structure type "particle" contains the
vectors "position", 'velocity", and "acceleration", as well as mass, density, temperature,
etc., characterizing each particle. An array of these structures contains all the physical
data. The particle structure contains two fields used to facilitate testing of tree and grid
particle locator schemes: these are part-hum (the particle's index number in the array),
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and next (a pointer to another particle, used to pass lists). Some of the needed particle
data is stored in another structure: old-part. These are the particle data at the previous
timestep (needed by Runge-Kutta to retry timesteps), the material number (mat-no), the
thermal conductivity (thmcon), the sound speed squared (csq), and the velocity
divergence times the density (rhodelv). This structure is stored in the extra segment
when running on QNX, see the programmer's guide for treatment of these variables.

1.2.2 Equations

The physics of the code currently consists of the two equations

d2 z
= accel , (1)

de

-= dedtdt

plus the equation of state:

p. . ( rho, T) k p. T ( rho. a

where e is the internal energy per mass, accel the acceleration, and dedt the heating of
the particle. It is the responsibility of the physics routines to add their contributions to
accel and dedt.

The continuity equation is currently evaluated by computing the density as a direct sum
over the mass of neighboring particles. This is the most conservative approach in terms
of the numerics, and eliminates the need for explicit integration of this equation.

1.2.3 Integration

The "step" portions of the code advances the equations using a second/third order
Runge-Kutta algorithm. See Fehlberg, NASA TR-R-315, 1969. The Runge-Kutta
technique evaluates the maximum relative error each timestep adjusts the next timestep
to achieve a desired level of accuracy. This scheme may choose integration steps larger or
smaller than the usual Courant condition, as the problem warrants. The initial timestep
is chosen to be one tenth the Courant step (determined from the minimum of the physics
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timesteps), and allowed to gradually increase. For problems with sound waves and
shocks, the final timestep is usually near the physics step size. For simple translation or
expansion phases, the step size is larger, but subject to a user-defined limit (generally
taken to be 5 times the Courant step). For violent phases of problem evolution, such as
collisions, a large step may be recalculated several times to resolve the onset of the
action, and the final step may be smaller than that determined by the physics (the
"physics" timesteps are estimates of the Courant stability condition for each process, in
the present scheme accuracy rather than stability is used to determine the timestep).

The details of the current scheme are, given a target error "Tol", and a computed error
"error" for the timestep, we have

error < 0.5 Tol increase timestep, max = 50% increase
0.5 Tol < error < 0.7 Tol no change
0.7 Tol < error < 1.5 Tol decrease timestep
1.5 Tol < error redo step with decreased timestep

The amount of the timestep increase or decrease is computed by the Runge-Kutta code
to produce the desired error adjustment. In addition, the timestep is usually limited to
5 times the normal Courant timestep as a safety margin. Finally, no increase is allowed if
the previous timestep was decreased or recomputed. Tol is usually taken to be about
1.e-4.

Another option is to "turn off" the error control. In fact, this uses the above scheme as
well, but also requires the timestep to be not less than the usual Courant step. Thus the
timestep will be at least the usual Courant step, and the error estimate will show the
resulting level of accuracy. This option is often used for a new problem to get some idea
of the accuracy of a normal Courant run before setting the desired Tol.

The remainder of this note contains a description of the current architecture and options
of the code, and will serve as a starting point for future additions and modifications.

1.3 FLOW CHART-OUTLINE

The logical structure of the code consists of several blocks; they are listed below showing
the overall code structure. This should provide a general feel of how the computation
proceeds. For details, see the Programmers' Guide.
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Begin sphc()

--- system initialization

sph-default() set defaults

sph-setup() initialize problem

==timestep loop--

thermoo) compute density, equation of state,
conductivity, rhodelv, smoothing length

ecompute() compute energies, energy check

dtcompute() compute tirmestep

run-check() process interrupts, check if done.
do file i/o

rhs() compute right-hand-sides of all equations
compute physics

--- begin new step here ...

start-step() store old step environment

stepl() Runge-Kutta advance to t + dt/2

thermo() compute density, equation of state
rhs() compute right-hand-sides of all equations

step2() Runge-Kutta advance to t + dt

-end timestep loop=-

end sphc
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1.4 USER OPTIONS

This code can be run in several modes. The usual method of local execution is in
"interactive" mode, accessed by typing:

sphc

while in the directory /sph/code. Menus then appear that allow selection of all code
parameters.

When running remotely, or if the menus are not needed, type either

sph r to execute directly from files rs and rs.par
or

sph p to read rs.par for parameters.
but use sph-init() for the model setup.

The files rs and rs.par are normally stored in the directory "/sdat". Another directory
can be selected in the main menu, and the restart files read from there. The following
options are selected in the input screens, or in the "init" routines

MAIN MENU:

SETUP...

Problem title:
Problem identifier string.

Number of particles to allocate:
Specify the maximum number of particles desired (setup routines will
be limited to this number).

Spacing adjust factor:
See "grid generator" section.

Vary h (h-vary):
Enable the variable smoothing length option.
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Random Perturbation:
This percentage of random displacement in x. y and z will be applied
to each particle before starting the problem. This is useful to
allow the particle positions to adapt quickly to an initial
distortion. This procedure can be followed by a relaxation to
relieve large density fluctuations.

Particle division:
Enable subdivision of particles in regions of low resolution.

Particle combination:
Enable recombination of particles if needed.

TIME PARAMS...

Maximum time:
Normal end time for the run. If set to zero, then prompts for
number of timesteps and dump interval in steps will be generated in
the secondary menu.

Error tolerance timestep control:
Enable the Runge-Kutta timestep control, the relative error
tolerance will be prompted for in the secondary menu. If not
enabled, the timestep defaults to the "physical" timestep (minimum
of Courant and other physical processes).

Timestep limit:
Maximum timestep in units of the Courant (physical) step size.
Default is 5.

Run Modes:
1. Integration (default)
2. Relax - do not update velocities, but move particles
3. Relax to zero velocities - update velocities, but gradually damp

all velocities to zero

Relaxation is flagged by on.relax. the zero velocity option by
eq-relax. Relaxation continues until the specified time or number
of steps is reached. The diagnostic "check" indicates the degree of
convergence. When done. run-check resets the parameters to run mode.
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PHYSICS...

Hydro (on.hydro):
Turn on the hydrodynamics, including the artificial viscosity and/or
diffusion terms needed to handle shocks. PdV terms are added to the
momentum and energy equations.

Thermal diffusion (on.thm-diff):
Turn on electron thermal diffusion, coefficients in eos menu.

Gravity Accel (on.grav):
This option (usually set in sph-initO) allows a constant external
acceleration to be applied. The potential energy of this force is
included in the energy check. If the "R" component of the gravity
is set, then the gravity is directed along the radial direction
(flagged by on.rad-grav).

DD/DT Thermonuclear Burn Yield (on.burn.
Turn on computation of neutron yield from DD or DT compression.

10 FLAGS...

Write data?
Flag to enable restart dumps.

Directory path:
This is the directory for restart dumps, default is /sdat.

Read data?
Read restart data from the files rs and rs.par.

Begin Again?
Make another pass through the initialization routines (start over).

SECONDARY RUN PARAMETERS

DEBUG FLAGS...

Debug Modes:
"debug" -"y" generates:

1. particle summaries for the "target" particle
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2. run status information (show module executing)
3. full debug output from each executing function

If "d" is input from the keyboard during a run. toggle the debug mode.

Particle number to track:
Choose "target" particle.

Write history:
If "history" is set. a full history file for the target particle is
written to /tmp/history.

Dump EOS quantities?
This includes a variety of quantities in the restart dumps that are
not normally written, such as pressure, energy, etc.

GEOMETRY...

Spherical problem (on.sphere):
If dimension == 1, this option selects spherical coordinates (x is
r).

Cylindrical problems (on.cylinder):
This option selects cylindrical coordinates for dimension == 1 or 2.
"Y" is always the cylindrical axis (x is rho. y is z).

RUN CONTROL...

Max number of timesteps:
Displayed if max-time = 0 from first menu.

Step / Time interval for dumps:
Controls the frequency of restart/diagnostic dumps.

Accumulate dumps?
This option causes each data dump to be appended to a single dump
file "s". Should be used only for small runs.

Overwrite dump file?
This option also enables a series of writes to the file "s". but
here the file will be overwritten each time. If this option is NOT
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selected, the dumps will be written to a series of files named
"s.O0", "s.O1", etc. and the parameter data will be written to

"s.OO.par" . "s.O1.par", etc.

Call PLOT-MAC?
If selected, a call to the routine "plotmac" will be attempted each
time that the restart dump is updated. This routine is usually a
shell file containing plotting macros.

Relative error tolerance:
Set the desired accuracy (Tol).

Relax to zero velocities?
Sets the type of relaxation.

Set gravity:
Reset the gravity acceleration vector.

Maximum / minimum particle size / mass:
Set limits to be used by particle division routines.

EQUATION OF STATE PARAMETERS MENU

Smoothing length adjustment:
This is a multiplier for the normal smoothing length that is set in
the setup routines. Can be used to test the effects of longer or
shorter h either at problem initialization or during a run.

Physical timestep multiplier:
This factor multiplies the Courant and other physical timestep
limits to determine the actual timestep. The results are displayed
during the run and used to determine the upper timestep limit.

PG gamma. poly gamma, and mu:
Parameters for the perfect gas equation of state, if selected. See
the "equation of state" section.

Art-visc parameters:
Alpha - multiplier for the linear artificial viscosity term.
beta - multiplier for the quadratic artificial viscosity term.
gi - multiplier for the linear artificial conductivity term.
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g2 - multiplier for the quadratic artificial conductivity term.
shock density ratio - the density jump expected for the strongest

shocks in the problem (used to prevent near zero timesteps).

LASER DEPOSITION MENU

This menu is activated if on.laser=TRUE is specified in sph-initO().
See the "laser deposition" section for details.

1.5 RUNTIME INTERRUPTS

The following keyboard inputs are recognized by run-checko:

S?' - help
Sp' - pause for input or restart

'd' - toggle debug output mode
.w' - write to file this step

The buffer is checked only one time each step, so some waiting is usually required before
the keystroke is processed. Only the LAST character in the buffer is recognized, others
are discarded.

1.6 RESTART CAPABILITY

At selected intervals, the problem status can be dumped to a file. The new data can
either be appended to existing dumps, or replace the previous information. Two files are
usually produced, both in CDAT data-base format, they are:

/sdat/s.par - current problem parameters
/sdat/s - current problem particle data.

The directory "/sdat" can be changed in the main menu. Only the independent variables
and parameters are included in these files. All other needed quantities can be generated
by one pass through rhso. The number of attributes in /sdat/s varies, depending on the
number of dimensions in the problem, and whether the "append" option is in effect, and
whether the "dump-eos" flag is set.
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It is also possible to turn off the "overwrite" flag. In this case a series of up to 99 dump
files will be written, named

/sdat/s##.par - current problem parameters
/sdat/s## - current problem particle data.

where ## is 00, 01, 02, etc.

No graphics capability is included in SPHC. All needed plots can be generated from the
restart dumps using available post-processors.

Optionally, a history file can be written (history = TRUE). This file contains the full
status of the particle pointed to by "debug-part" for each timestep of the run. In
addition a full energy history for the problem is written (kinetic, thermal, potential,
laser). To suppress the particle data, set debug-part = 0.

1.7 PROBLEM INITIALIZATION

A particular problem is currently set up by modifying the routines:

sphjinito() set or reset defaults and initial values
sph-init() initialize coord, velocity, density, mass, mu.

for all particles
sph.bc() appropriate boundary condition code

The sph-init00 call occurs after the standard system defaults are set, but before the
interactive data input screens in sph-setup0. Memory allocation is based on Npart-mem
set here. Npart, the actual number of particles, cannot exceed this number. Sph.Jnit() is
called after all parameters have been set and space allocated. Sph-bc( is called by
"step" after the equations have been advanced each timestep, and may be used to limit
particle motion in certain directions. See Section 8 for more details.

1.8 GRID GENERATOR

A standardized grid generator may be used to assist in problem initiation. Rather than
coding up all particle positions in sph-init 0 , this routine will compute a series of x/y/z
locations on a grid using a standard algorithm; it also computes the mass of each particle
needed to achieve a desired initial density. Grid-gen is called from sph-init for each of
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possibly multiple areas of gridding with different parameters. Sphinit passes grid-gen a
pointer to a function that will initialize the particles in each grid. For illustrative
purposes, this function is called here "partinit". For problems with multiple blocks, a
different part-init may be supplied for each block. The second argument for grid gen is
an integer: "dir", which is used only for hex grids. If dir=O, one axis of the grid is
aligned along the X axis and the others are at 60 degree angles. If dir=1, then the
alignment is along the Y axis.

To use this option, set the following quantities in sphinitO:

Grid.gen - TRUE
Space.adjst = multiplier on grid spacing to allow for odd shapes

(default - 1. change from unity if the delivered number of
particles does not match the desired number)

Grid-standoff - distance to start grid from first boundary
(units of grid spacing. e.g al leaves I blank cell.
default = 0.5)

In sphinit do the following things:

Set:
Grid.npart = number of particles desired in current grid
Grid-type 1 1 for rectangular grid

2 for hexagonal grid
Maxx. Minx. Maxy. Miny. Minz. Maxz: define a cube containing the

model
Volume: estimated volume of this block of the model (NOT the cube!)
Rho: desired density of material (g/cc)

call: grid.gen( "partinit". dir ); for first block

reset parameters;

call: grid-gen( "partinit2". dir ); for second block

repeat for as many blocks as desired.
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In "partinit" do the following things:

1. test vector Grid if in desired volume, if not
return(1);

2. else increment: Part-num
initialize part coord - Grid, mass = Mass

initialize part veloc, temp. matno
3. return(1)

4. if any fatal errors occur. return(O)

Note that the generator covers the entire "cube" with grid, it is up to "part-into" to
select only the points lying in the initial model. This is usually done with a series of
logical tests. The global parameter h.spacing is set equal to the particle spacing in the
generator, and may be used in other functions.

The generator may be used in 1, 2, or 3 dimensions. Currently available options are:

Grid-type = 1:

Dimension = I Uniform grid
Dimension = 2 Rectangular mesh
Dimension x 3 Rectangular mesh

Grid-type a 2:
Dimension = I Uniform grid
Dimension = 2 Hexagonal grid
Dimension = 3 Cubic lattice of hexagonal grids

1.9 BOUNDARY CONDITIONS

At present, boundary conditions can be handled in two ways, selected by the value of
on.boundaries:

Type 1 boundaries: on.boundaries = FALSE.

In this case the routine sph-bc 0 is called once each timestep after the second
Runge-Kutta step, but before the "rhs" evaluation. At this time any part of the problem
may be adjusted "outside" of the normal Runge-Kutta computation. Obviously, great
care needs to be exercised in taking advantage of this option. The usual application is
that of reflecting particles at a wall. The code looks like this, assuming that the xmin-bc,
etc. have been set in sph-initOO:
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sph-.bc()----------------------------handle any boundary conditions ~

int i;
/* three sided box ~
/* reflecting sides *

for( 1 1: 1; <= Npart: i++){
if( part~iJ.coord.x < xinbc){

part~iJ.coord.x xin-.bc;
part~iJ.veloc.x *u-I.;

if( part~i) .coord.x > xmax...bc)
part [i) .coord. x -xmax..bc;
part~iJ.veloc.x *--1.;

if( part~iJ .coord.y > ymax.bc){
part~iJ.coord.y =ymax-.bc;
part~i).veloc.y *=-1.;

Type 2 boundaries: on.boy~ndaries = TRUE:

This option turns on a general boundary condition handler. The number, type, and other
characteristics of the boundaries are set in sphinitO, as in the following example:

1* boundaries *
on.boundaries TRUE;

bounds(1) type PER;
bounds[I].per-.type - X2;
bounds[1].p~r.offaet.x a -size:

bounds[2] type aPER;
boumds[2.pr-.typo - X2;
bounds(2].per-.offset.x - size;

bounds[3].type - REFL:
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In this case three boundaries are specified, boundaries I and 2 are periodic, while
boundary 3 is reflecting. Valid boundary options are: WALL, REFL (reflecting), PER
(periodic), AXIS, FLOW (flow-thru), FIXED, and PISTON. The last three are not yet
implemented. In the case of PER boundaries, the type can be X2, Y2, or Z2 for fixed
offsets in x, y, or z directions, and the offset is specified as the distance from the other
boundary (in the above example, boundary 1 is at 0, boundary 2 is at "size"). Care
should be taken to insure that these values are consistent with the boundaries specified
in sph.bco.

In sph.bc( the user is obliged to supply code to test whether a particle is within 2*h of
the boundary and return information about it, namely, the number of boundaries near
the particle, which boundaries they are, the coordinates of the nearest points on each
boundary, and a flag that indicates whether the particle is on the wrong side of any of
the boundaries. The code below illustrates this.

/* -------------------------- BOUNDARIES --------------------------------
/* sphbc will be called for each particle if on.boundaries == TRUE */

arguments:
coord position of particle
h smoothing length of particle

return:
numb a number of boundaries within 2h

must be <- 5
num = boundary number of each
bdry[l->numb] = location of closest point on each boundary

plus boundary number
plus crossed = TRUE is particle has crossed

*/

sph-bc( coord, h. numb. bdry ) /*-------------------------------------
vectptr coord;
struct bdry.list bdxry[](
float h;
int *numb;

/* fixed boundaries
*numb = 0;

/* axis */
if( coord->x < 2. * h ) {
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(*numb)

bdry[*numb].coord.y - coord->y;
bdry[*numb].coord.x = 0.;
bdry[*numb].coord.z = 0.;
bdry[*nmb].num - I;

if( coord->x < 0. ) bdry[*numb].crossed = TRUE;

else bdry[*numb] .crossed = FALSE;

/* outer boundary ,/
if( coord->x > xmax-bc - 2. * h ) {

(*numb)++;

bdry[*numb].coord.y = coord->y;
bdry[*numb] .coord.x - xmax.bc;
bdry[*numb].coord.z - O.;
bdry[*numbl.num - 2;
if( coord->x > xmax-bc ) bdry[*numb].crossed = TRUE;
else bdry[*numb.crossed = FALSE;

}

/* lower boundary */
if( coord->y < 2. * h ) {

(*numb)++ ;
bdry[*numb].coord.x a coord->x;

bdry[*numbl.coord.y a 0.;

bdry[*numb].coord.z = .;
bdry[*numbJ.num = 3;
if( coord->y < 0. ) bdry[*numb].crossed = TRUE;
else bdry[*numb].crossed = FALSE;

return(1);

Warning: note that the bdry and coord vectors are referred to differently in sph-bc, we
put bdryfi].x, but use coord->x. This usage is forced because we pass a pointer to the
coord vector structure (as in the vect3 routines), but the "bdry" in the calling sequence
is a pointer to an ARRAY of vector structures (note that an & is not needed on bdry
when calling this routine, since array names are treated as pointers, as in fortran). The
declarations in sphbc make this clear.
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See the SPH Technical Guide for details on boundary implementation.

1.10 INPUT MENU

Any particular problem will have its own set of parameters that define the various sizes,
shapes, velocities, masses, densities, etc., of the components of the problem. These are
set in sph-initO() or in sph-inito. Often, many of these parameters will need to be varied
during the course of several problem runs. It is convenient to code a simple menu in
sphinitO() to allow run-time adjustment of these parameters. The following example
shows how this is done.

/* problem */
strcpy( cool-name. "ch" );
strcpy( hot-name. "ch.1" );
hottemp - 1.e65;
cool-temp - 1.e3;
hotden = 0.1;
cool_den = 0.1;
height = .006;
width 0.02;
groove-depth = 0.2; /* fract of height */
groovewidth = 0.25; /* tract of width (full wavelength) */

line - 1;
reset.paramo;
set-param( "F1 = continue. ESC f exit". "control", 0. 0. 0 );
set-param( "LA2_2D PARAMS". "header". 0. 0. 0 );
set-param( "Target width (cm)". "double". &width. 0. 0 );
set-param( "Target height (cm)". "double". kheight, 0. 0 );
set-param( "Hot Material". "string". khot-name. 0, .1 );
set-param( "Hot Temp (K)". "double". khot.temp. 0, 0 );
set.param( "Hot Density / solid". "double". khot-den. 0. 0 );
set-param( "Cool Material", "string". kcoolname. 0, 11 );
set-param( "Cool Temp (K)". "double". kcooltemp. 0. 0 );
set-param( "Cool Density / solid", "double". kcool-den. 0. 0 );
set-param( "Groove fract depth". "double". kgroovedepth. 0. 0 );
setparam( "Groove fract wavelength". "double". kgroove-width. 0, 0 );

menu:
if( interactive) {

ret-val a edit.param( line ):
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if( !ret-val ) return( 0 );
}
cool-mat -matlookup( coolname );
hot-mat mat.lookup( hot-name );
if( interactive) {

if( cool-mat -- -1 ) {
line = 8;
goto menu;

if( hot-mat -- -1 ) {
line - 3;
goto menu;

1.11 EQUATION OF STATE

The implementation of the analytic equation of state is described in detail in the SPH
Technical Manual. Here we outline the method of accessing this routine in the problem
setup.

The example in the previous section shows a problem with two materials. For
convenience, the routine mat.Jookup( name ) has been included in the module eos.c .
This routine takes a material name as an argument, and returns the table entry number
for that material. Valid materials and parameters are listed in Table 1.

A return value of -1 indicates failure to match the label. The table number of each
material is included in the restart dump.

The first entry (mat.no = 0) is "pg", indicating a perfect gas equation of state. The
equations used here are

P - (R/Mu) rho * T.
and

T - (R/Mu) * (Gamma - 1) * E.

The parameters Gamma (ratio of specific heats), and Mu (mean molecular weight), are
set in the setup portion of the SPHC system. An additional parameter, GammaP
(polytropic gamma) must also be specified. This parameter can be used to specify a fixed
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constant dQ/dT to generate "polytropic" evolution. GammaP = Gamma results in the
adiabatic case, while GammaP = 1 produces an isothermal model. See the Technical
Manual for details and other examples. These three parameters are not used if no perfect
gas regions are specified, and all perfect gas regions are constrained to use the same
parameters with the present setup.

In addition, the code provides the capability of distinguishing between several regions of
the same material. It does this by allowing 100, 200, etc. to be added to a material
number with no effect on the eos computations. Thus three regions of dt may be labeled
6, 106 and 206. All use the same eos parameters. The different materials are labeled
"dt", "dt.1", and "dt.2" in the call to mat-lookupo. When accessing eos data directly
(using the solid densities, for example), be sure to use hot.mat%100 as the index to split
off the U100" tag.

When initializing the particle array, the material number is stored in the extra segment
as @&old-part[i].mat-no and this is an integer member of the old-particle structure. This
parameter is stored in old-part simply to save space. It is a current value, NOT an "old"
value. In fact, this data is never expected to change for ordinary problems.

1.12 LASER DEPOSITION

Laser deposition is selected by setting or.l, er = TRUE. The following parameters must
then be set (this is usually done 'n laser.setup) via a pop-up menu):

E-laser laser energy, Joul e-
Fwhm pulse length, ns
Spot.rad laser spot radius. microns
Wavelength laser wavelength. microns
F-number laser f-number (def=6)

the convergence half-angle is 1/2F radians
Bremfac inverse Bremsstrahlung multiplier (def-0.5)
NfeO fraction pre-ionization at 1 cm from target (def=.05)

(fraction of singly ionized ions initially present)

These parameters plus laser-etot, the total energy currently deposited via laser
deposition are written to restart dumps. All parameters are converted to cgs units
immediately after entry.
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When setting up problems with laser deposition, observe the following conventions:

The laser propagates from infinity along the Y axis.
The initial target surface is located at Y = 0.

1.13 PARTICLE DiVISION/CREATION

Version "bl" includes a test version of a new particle division algorithm. The intent here
is to increase resolution in low density areas of a problem by dividing particles whose
smoothing length exceeds some threshold. To use this option, set the following
parameters:

on.divide = TRUE
max-h = smoothing length threshold for particle division
min-mass = minimum mass allowed (this limits the division process)

Obviously, this option will only work if variable smoothing length is used.

In other problems, the addition or subtraction of particles at boundaries may be
desirable. Inflow and outflow boundary conditions (not implemented at present) would
be an example. If the details in a certain region of the problem are not of interest, the
particles can be dropped from the calculation in the following way:

Set on.delete = TRUE

In sph.bc, include code of the form:

/* move top
boundary */

if( h =0 0. ) {
ymax-bc - NEW LOCATION OF BOUNDARY
if( pcoord->y > ymaxbc ) {

return( -1 );
}

else return(');
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A special call is made to sph-bc() with h = 0 from drop-particles0, which is called by
thermoo if on.delete = TRUE. If a value of -1 is returned, the particle is dropped. This
call is made before the density or equation of state is computed.
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2.0 PROGRAMMER'S GUIDE

2.1 INTRODUCTION

This is a supplement to the SPHC User's Guide, and is intended to supply the
information needed to perform modifications to the code. It also sets needed guidelines
for code format and organization.

2.2 FLOW CHART-DETAILS

The chart shown below is a more detailed flow/structure chart for the code. Here all
routine calls are shown in the order of execution, with indentation to indicate
dependencies. Also, a brief description of the purpose of each routine is given. See the
User-guide for a summary of this chart. See the Function directory for details of each
routine.

START:
---system inits---

setpriority() set for low priority run
process arguments check for restart conditions
initscr() / scrollok() set up menu system flags

sph-default() set defaults
..... set all default values
ker.setup() set kernel parameters
sph-initO() problem dependent routine

to set or reset parameters
laser-setup() set laser params (if on.laser)

sph.setup() initialize problem
screen input routines:

reset.param. set-param. edit.param

read-param() read problem parameters
calloc() allocate memory
allocsegment() allocate extra segment memory
read.dump() read restart file
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eos-init() set eos and art visc params (input)

screen input routines
sph-init() problem setup (problem dependent)

grid-gen() optional, repeat possible
"part-inito" user specified particle setup routines

smooth-temp() optional smoothing step for initial temps
sph-random() apply random perturbations to x. y. z

adjust masses for curvilinear problems
file-init() open restart file. open history file

nn-compute() set initial smoothing lengths to nearest
neighbor distances

TIMESTEP LOOP:

check-boundaries() check for illegal particle positions
sphbc() user boundary routine
reflect-particle() reposition wayward particles

sph-bc()
vector-routines

init-nbr() initialize neighbor list pointers

thermo()

..... zero thm-con, av-mu-max

drop-particles() drop unneeded particles

h-compute() update smoothing length

rho-compute() compute density
get-nbr-list() find neighbors

miss() check particle distances
octree() alternate tree scheme

do-rho() compute i/j density terms
kernel() compute Wij
vector routines

do-bounds() compute boundary density terms
do-rho() used for ghost boundaries

rho-wall() used for wall boundaries

vector routines
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divide-particles() divide particles in low density areas

eos.compute()
eospe compute pressure and energy (step 1)
eospt compute pressure and temperature (steps > )

ediff() compute thermal diffusion

ecompute() compute energies, energy check

dtcompute() compute physics (Courant) timesteps
..... compute error control timestep
..... retry timestep if needed

run-check() process interrupts, check if done
char.waiting() check for keyboard input
write-part() debug output
writestep() restart dump

file-init() re-open file if needed
write-param() write parameter summary to disk
plot-mac generate graphics output

.... display run-time information

rhs() compute right-hand-sides of all equations

zero accel, dedt

gravityO) compute accel due to gravity
vector routines

hydro() compute accel due to hydro
get-nbr-list() find neighbors
vector routines
do-hydro() particle i/j force terms

art-visc() artificial viscosity
kernel() kernel, for force computation
vector routines

do-bounds() boundary forces
hydro-wall() wall force terms
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art-visc() artificial viscosity

kernel() kernel, for boundary forces

vector routines
do-hydro() ghost particle force terms

vector routines

thm-diff() compute thermal, viscous, and radiation diff
get-nbrlist find neighbors
vector routines

kernel kernel, for diffusion equation

burn-yield() calculate neutron production for DD/DT burn
(if on.burn)

laser-dep() compute laser deposition (if on.laser)

polyO) apply polytropic corrections

<NEW TIMESTEP BEGINS HERE>

startstep(0

..... print step header
vector routines store old values and rhs's

step1() first RK step
vector routines advance equations to t + dt/2

sph-bc() do boundary conditions (problem dependent)

thermo() see above
rhs() see above

step2() second RK step
vector routines use old variables and rhs's

advance equations to t + dt

sph-bc() do boundary conditions (problem dependent)

\clearpage

cleanup-nbr() clean up neighbor list pointers
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END TIMESTEP LOOP
END

DETAILS OF BOUNDARY TREATMENT

physics routine (hydro. etc..)
do-bounds() driver

sph-bc() user routine to check for boundaries

*do-wall() pointer to WALL boundary routine

get-refl-listo) prepare REFLECT pointers
getnbr.list ()
vector routines

do-refl() REFLECT boundary
copy.particle ()
ref lect.particle ()

sphbc ()
vector-routines

*do-ghosto) pointer to ghost handler

get-per-list() prepare PERIODIC pointers
get.nbr.list ()
vector routines

doper() PERIODIC boundary
copyparticle C)
*do.ghost() pointer to ghost handler

Here, *do-wall and *do-ghost are pointers to physics routines to handle the interactions
with walls and ghost particles. They are passed in the calling sequence of do-bounds.
Boundaries in addition to the basic WALL, REFLECT, and PERIODIC will be added in
the future. For further details, see the comments in each routine.

2.3 SPHLIB DIRECTORY (routine locations)

The indented names are routine names, the ".o" names are the file names. For example,
the source for "eospe0" is found in the file "eos.c".
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burn. o
burn-yield
burn-part
sigmav-bar

laser.o
laser-setup
laser-spot
laser-dep
laser-pulse
bremk

step.o
start-step

stepl
step2

thm-diff.o
thmdiff

hydro.o
hydro
do-hydro
hydrowall
gravity

sph-bounds.o
do-bounds
get-refllist
get.per-list
do-refl
do-per
check-boundaries
reflect particle

eos .0
eos-init
eospe
nrg
eos-pt
tjnrg

mat-lookup
art-visc
poly

kernel.o
ker-setup
kernel
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norm
SPHComput.o

*os..compute
dt-.compute
nn-.c ompute
h-c ompute
...c ompute

rho o
rho-.c ompute
do-.rho
rho-.wall1

run-.check. 0
run-.checkI
finish

sph.utl .0
sph. random
nfe 1
e-.diff
smooth-.t emp
divide-.partic les
divide-.part~ '
copy particle
delete-.particl1e
drop-p..articles

vect3 .o
,z e ro
veq
vsum
vdiff
vav
vmult
vin
dot-.prod
cross-.prod
vect-.len
vect-.len2
x-.veq
x2-veq
x-.vlin
x..vdif I
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The particle neighbor routines are machine dependent (e.g., "miss" is used for small
machines, "oct-tree" for large machines, etc.) they are linked separately. They currently
include:

miss .o
get-.nbr-.list
init-.nbr
cleanup-.nbr
miss

octree .0
get..nbr..list
init-.nbr
c leanup..nbr
octree
alloc-root
dump-~tree
f ree-.tree

split-node
do-.tree

For the PC version of the code, a second code segment is defined, called SEG2 in the
Makefile, it includes:

sph-.default .o
sph-def ault

sph-.setup.o
sph-.setup

sph-io.o
file-.init
write-.step
read-.dump
write ..param
read-.param
write-..part

grid-.gen.o
grid-.gen
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2.4 GLOBAL DEFINITIONS

All globally defined variables, type definitions and "defines" are found in the file "sph.h",
listed here:

/* sph.h -- header file for SPHC routines */
/* version bk 11/08/89 - Copyright (C). Mission Research Corp., 1989 */

#include <stdio.h>
#include <math.h>
#include <const.h>

/* systems available */
#define QNXX 0 /* QNX 286 compiler */
#define QNXY 1 /* C86 compiler */
#define UNICOS 2
#define MSDOS 3

/* type of pop-up menus */
#define CURSES 0
#define VTERM 1

/* set up system here */
#define SYSTEM QNXX
#define MENULIB VTERM

/* menu info ,/
#if SYSTEM QNXX
#if MENULIB == CURSES
#define printf printw
#define fprintw fprintf
#endif
#endif

/* system file info */
#if SYSTEM - MSDOS
#define PATH "\sdat\"
#define MODR "r+"
#define MODW "w+"
#define MODA
#else
#define PATH "/sdat/"
#define MODR "rv"
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#define MODW "wv"

#define MODA "av"

#endif

/* memory limit/k */
*define Kmem 64

/* Defines for Ansi C Compatibility */
#if SYSTEM =- QNXX
#define EXS 0
#define EXP -}
#else
#define EXS *

#define EXP ->

#endif

/* handy macros ,/
#define sq( x ) (x) * x))
#define cub( x ) ((x) * x) * x))
#define cbrt( x ) (pow( x), (1./3.)))
#define quad( x ) (x) * x) * (x) * x))
#define fmin( x. y ) (x) < (y) ? x) (y))
#define fmax( x, y ) (x) > (y) ? x) (y))

/* constants */
#define R 8.3170e+07 /* erg/deg/mole */

#define K 1.3805e-16 /* erg/deg */
#define Key 1.6022e-12 /* erg/eV */
#define SIG 5.6690e-05 /* erg/cm2/deg-4/sec ,/

/* logic */
#define LOGICAL int
#define TRUE I
#define FALSE 0

/* grid types */
#define RECT I
#define HEX 2

/* boundaries */
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#define MAX-BOUNDARIES 6
/* boundary types */

*define WALL 1
#define PISTON 2
#define PER 3

#define REFL 4
#define FLOW 5
#define AXIS 6
#define FIXED 7

/* Periodic types - several can be on at once
#define X2 I

#define Y2 2
#define Z2 4

-==== == data structure defs ==------------------=-=--------------*-

/* run flags */

struct run-_params {
LOGICAL sphere; /* spherical coords */
LOGICAL cylinder; /* cylindrical coords */
LOGICAL boundaries; /* boundary conditions in effect */
LOGICAL relax; /* relax to quiet start */
LOGICAL hydro; /* do hydro */
LOGICAL grav; /* turn on gravity */
LOGICAL rad_grav; /* turn on radial gravity */

LOGICAL av-diff; /* turn on viscous thermal diffusion */

LOGICAL elect.diff; /* turn on electron thermal diffusion */
LOGICAL raddiff; /* turn on radiation diffusion */
LOGICAL laser; /* turn on laser deposition */

LOGICAL burn; /* turn on DT/DD burn neutron production

LOGICAL divide; /* turn on particle division */
LOGICAL combine; /* turn on particle recombination */
LOGICAL create; /* turn on particle creation */
LOGICAL delete; /* turn on particle deletion */

/* 3D vector */

struct vector {
float x;
float y;
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float z;

/* vector pointer type */

typedef struct vector *vectptr;
/* functions */

extern double vect-len(). vect-len2(). dot-prodo:

/* kernel parameters */
struct kerdat {

char name (15]
double opt-space; /* ideal spacing in terms of h */
double cutoff; /* h at which kernel is effectively 0 */

/* problem identifiers */
struct titles {

char driver(15];
char problem[15];

/* define a particle */
struct particle {

struct vector coord;
struct vector veloc;
struct vector accel;
float energy, dedt;

float mass;
float smIn. temp. density, pressure;

int partnum:
struct particle *next;

/* scratch pointer */
struct particle *nxxt;

/* previous values */
/* to put in extra seg */

struct old-particle {
int mat-no;
float rhodelv, thmcon, csq;

struct vector o.coord;
struct vector o-veloc;
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struct vector o-accel;
float o-energy;
float odedt;
float o-density;
float osm.ln;

struct bdry-list {
struct vector coord;
int num;
int crossed; /* TRUE - particle is on the wrong side of boundary */

/* will be returned to problem space according to boundary
conditions by check-bounds */

struct bound {
int type;
/* for Periodic only */
/* Periodic boundaries must be two parallel boundaries in X.Y. or Z

No checking is performed to verify consistency.
the offset is subtracted from the appropriate boundary */

int per-type; /* 2X. 2Y, 2Z *1
struct vector per-offset;

struct timestep C
char name[15];
int part;
double dt;

/ *============= common variables here = = = = = . .

/* general parameters *I
EXTERN struct run.params on;
EXTERN struct particle *part;
EXTERN struct old-particle *old-part;
EXTERN struct vector gray;
EXTERN double grar;
EXTERN LOGICAL append. overwrite, history. debug. dump-eos;
EXTERN LOGICAL plot-macro, dtcntrl, interactive;

38



EXTERN int dimension. Npart.mem;
EXTERN int Npart. istep. maxsteps, step-skip, debug-part, plotnum.
dump-number;

EXTERN double e-time, dt. max-time, time-skip. timestep.const;

EXTERN double pertsize, errtol;
EXTERN double k-e. te. p_e. entot. enO;

EXTERN char path-name[81];

/* for sphutl */

EXTERN struct titles Titles;
/* for eos

EXTERN double Gamma. GammaP. Mu;
EXTERN double rho-solid. csolid;

EXTERN double av-alpha, av-beta, av-den-ratio, av-mu-max;
EXTERN double av-gl, av-g2;

EXTERN int av-i. av-j;

/* timesteps */

EXTERN double dtphys, dtold, coulimit:
EXTERN struct timestep dthyd;

EXTERN struct timestep dtflow;
EXTERN struct timestep dtgrav;
EXTERN struct timestep dtthm;
EXTERN int retry;
EXTERN LOGICAL first-half-step;

/* for grid generator
EXTERN LOGICAL Grid.gen;

EXTERN int Part-num. Grid-npart. Grid-type;
EXTERN double Volume. Rho. Maxx. Minx. Maxy. Miny. Maxz. Minz. Spaceadjst;

EXTERN double Mass. Grid-standoff;

EXTERN struct vector Grid;

/* boundaries */
EXTERN struct bdry-list bdIistMAXBOUNDARIES+1];
EXTERN struct bound bounds(MAXBOUNDARIES+1];

/* for kernel */

EXTERN struct kerdat Ker;
EXTERN double h-inp. hspacing;
EXTERN LOGICAL h-vary;
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/* for thm-.diff *
EXTERN double Flux-.lim, Thm..mult;

/* for laser *
EXTERN double E..laser. Fwhm. Spot-.rad. Wavelength. F-.number. Bremfac, NfeO;
EXTERN double laser-.pwr. laser-.energy. laser-etot, laser.utot;

/* for DT/DD burn *
EXTERN double total-.neutrons;

/* for divide Icombine *

EXTERN double max-.h. min-.mass, min.,h. max-mass;

/ *================temporary variables here

EXTERN int cum-.retries, energy-.faults, ghost-.part-.num;
EXTERN LOGICAL res~t..energy. eq-.relax;
EXTERN LOGICAL begin.prob, read-.file. read-.data, writ~e-.file;
EXTERN double timeO. conv-.check. max.cou-.mult;
EXTERN char start-.timeE2S);

2.5 CODE UPDATE GUIDE

This is a checklist of things to do when updating the code or adding options. To simplify
the code structure, SPHC requires that pieces be added to existing routines for changes
of this type. If the new piece of code is large, consider inserting calls to new routines (as
done e.g., in eos-init / eos, and sph-initO / sph-init). As a standard example, we consider
the coding needed to add a new piece of physics to the code.

todo code module

write new-.physicsoC new-.physicsoC
add to directory and Makefile directory. Makefile
add new-.phyuics-.flag to "run-.params" sph.h

initialize flag sph-.default()
add call in rhso) sphc.o
if new equation, update RK scheme step.o
update this manual Prog-.guide

User-.guide
Tech-.guide
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Func-dir

optional changes

add new-physics global variables sph.h
set defaults sphdefault 0
interactive variable reset sphsetup()
computed quantities SPHCompute.o
add variables to restart dump sph.utl routines

add new-physics timestep SPHCompute()
add to timestep structure sph.h
add to timestep display SPHCompute()
set timestep name sphdefault()

Within each routine be sure that the new code is separate and clearly labeled as to
function, date of addition, and programmer (unlabeled means Stellingwerf). Also be sure
to conform to code structure and variable names used for other modules. If you don't
like the existing structure or names, please contact the authors of the affected sections
with your suggestions.

2.6 CODE STYLE

As a matter of clarity and consistency, we use a coding style similar to the classical
Kernighan and Ritchie format.

The basic rules are:

1. Indent four spaces at every "{".

2. Exdent four spaces at every "}".

3. Do not indent or exdent in ANY other circumstance.
(Indentation is used to keep track of brackets. The exact
placement of brackets is up to the programmer).

4. Labels (used sparingly) are placed at the left margin.
label:

5. Short comments are normally on a blank line and offset right.

/* a short comment */
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6. Place longer comments flush right in the code.

/* this is an example of a longer comment */

..or completely across if a section is delimited.

/* ------------ a major section comment ------------------------ *

7. Use blank lines liberally to enhance readability.

8. Use standard FORTRAN style statements whenever possible, avoid
lots of imbedded or unreadable C constructs, even if more
efficient.

9. Tabs may be used. but only for indentation at left margin. Use
the QNX convention: TAB = [4 spaces] whenever possible.

Note that nested ifs and fors do not require brackets in C if only a single statement is in
their range. PUT IN the brackets anyway to enhance readability and avoid the future
shock when someone adds a statement or two.

Note that switches are sometimes indented on the colon. The above rules forbid this
unless an extra set of brackets are added for each option in the switch.

2.7 UPDATING THE FUNCTION DIRECTORY

When adding new functions add a brief description to the directory in the format
(examples included):

function/module name ()

module: Xxcc.o
function: yyy.c. zzz.c

type: void

arguments:
int kk first one
double ff second one
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calls: vector routines. etc.

principal global variables:
first the first one
second the second one

principal local variables:
a the local value of a
b the local value of b

other not important

description:

Include here a brief statement of the routine's purpose in life.
Describe any cute algorithms and explain coding that may be obscure.

references:

List any references that may be useful, including other routines and
programs. Include specific references for algorithms.

2.8 SYSTEM IMPLEMENTATION

The SPHC code is written to be compatible across several different operating systems
with few code changes. Most code changes are made in the header file sph.h. These
changes are addressed in the section below pertaining to the particular operation system
used. To facilitate program input, SPHC is linked to a CURSES library. The CRAY and
QNX systems have a system dependant CURSES library while a CURSES subset library
is provide with the DOS version. The following sections describe the code changes
necessary for each particular operating system.

CRAY OPERATION SYSTEM VERSION

In sph.h, for CRAY operation under the UNICOS operating system, include the
definition:

#define SYSTEM UNICOS

This will automatically install the changes necessary for CRAY operation.
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QNX OPERATION SYSTEM VERSION

For the QNX version of SPHC the variable defined as SYSTEM in sphh must be set to
either QNXX or QNXY depending on the compiler used. QNXX for the standard QNX
compiler and QNXY for the QNX version of the Computer Innovations, INC. Optimizing
C86 Compiler. SPHC may also be linked to either the CURSES or standard video
interface libraries. The variable defined as MENULIB in sph.h must be set to either
CURSES or VTERM to link to these libraries respectively. The parameters changed by
defining SYSTEM and MENULIB deal with file I/O, default output directory path, and
extra memory segment addressing peculiar to the QNX operating system.

DOS OPERATING SYSTEM VERSION

For the DOS version of SPHC the variable defined as SYSTEM in SPH.H must be set
MSDOS. This version is presently set up to compile with the Computer Innovations,
INC. Optimizing C86 Compiler. SPHC may also be linked only to the CURSES video
interface library. The variable defined as MENULIB in SPH.H must be set to CURSES
to link to this libraries. The parameters changed by defining SYSTEM and MENULIB
deal with file 1/O and default output directory path.

(a). Setting up DOS system for SPHC usage

If you are starting from installation of SPHC on a DOS operating system this and the
following sub-section will be useful.

First, your CONFIG.SYS file must contain the following definitions:

DEVICE=(path)\VDISK.SYS 128 512 /E
DEVICE= (path) \ANSI.SYS
FILES=30
BUFFERS=30 (=7 under multitasking DOS)
FCBS=32,32

where "path" is the directory path to your RAM disk driver and ANSI control character
interpreter driver (it's best if they are in the same directory). The FILES, BUFFERS
and FCBS definitions are necessary for the C86 compiler mentioned above. Multitasking
DOS handles file caching much better than regular DOS buffering which is why only the
default number of buffers is necessary.
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Second, your AUTOEXEC.BAT file must contain the following lines:

PATH= (youi path declarations) ;c:\c86
C86TEMP=d: (or e: if this is your defined RAM disk)

where PATH is the default system search path and C86TEMP is a C86 compiler variable
defined as the location for the temporary files generated while compiling SPH. Use of a
RAM disk is highly recommended to reduce hard disk access therefore shortening
compilation time. It is also recommend that you have you C compiler (C86) on you
hard drive (which should be drive C) in the directory \c86. Adding "c:\c86" to your
default PATH definition makes compilation from the SPHC directory more convenient.

(b). Setting up SPHC directories

The set up of the SPHC and related routines under DOS should be as follows. First, you
should have a directory called \sph\code (similar to that under the QNX operating
system). This directory needs three sub-directories: \sphlib, \curlib, and \plib. The
directory \sph\code contains the SPHC driver source and the SPHJINIT input codes,
SPHC.C and SPH-INIT.C respectively. The SPH executable will also reside in this
directory. Provided with the distribution copy of SPH-DOS is a DOS batch file called
MAKE.BAT. This routine is provided to aid in building the SPHC executable. Its' usage
will be discussed later.

The sub-directory \sphlib contains all the physics subroutines called by SPHC.C and
SPHJINIT.C. The file DUMMY2.C contains certain routines peculiar to the DOS
operating system, those found in the QNX compiler but not in the C86 compiler.

The sub-directory \curlib contains all the routines necessary for terminal (screen) I/O.
These routines produce all the pop-up menus seen when first running SPH. There is also
a file called MAKE.BAT. This is a DOS batch file which, when executed, will create the
CURSES library called CURLIB.LIB from all the source code in this directory.

The sub-directory \plib contains all the actual low level screen interface routines. These
make use of the ANSI.SYS definitions. The file called MAKE.BAT in this directory
creates the library called PLIB.LIB that contains the object code compiled from the
source routines in this directory.

In addition the directories \sdat and \sph\tests must be created. These contain
respectively, the output generated while executing SPHC and some test input
SPH-INIT.C files.
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There are also several header files that must be copied into the directory \c86 from the

distribution disk directory by the same name, \c86.

(c). Creating and running SPH

After setting up the necessary parameters in the DOS system and copying the files from
the distribution disk to their complimentary directories on the hard disk you are ready to
compile SPH.

First, make the changes in the file SPH.H (found in the directory \sph\code\sphlib) as
specified in the introductory paragraph of this section. Next, go to the directory
\sph\code\curlib and type MAKE. This will execute the batch file MAKE.BAT and will
create the CURSES library CURLIB.LIB. Go then to the directory \sph\code\plib and
again type MAKE. PLIB.LIB will then be created. Now go up to the directory
\sph\code. Again type MAKE and the SPHLIB routines will be compiled and put in the
library called SPHLIB.LIB located in the subdirectory \sphlib. This batch routine will
also compile SPHC.C, the SPHC driver, and SPHINIT.C, the input problem code. All
the afore mentioned libraries will be linked with the SPHC and SPHINIT object codes
to produce the executable SPHC.EXE. To execute SPHC simply type SPHC and the
input menus will appear. At this point you may change any of the input parameters
interactively before problem execution begins.

If you wish to run a different problem, get the desired input code from \sph\tests and
rename it to SPHINIT.C in the directory \sph\code then type MAKE SPHJNIT. Just
SPH_[NIT.C will be compiled and the object files and libraries will be relinked. If you
wish to change a physics routine, edit your changes and type, while in the directory
\sph\code, MAKE routine.-name. This will compile and install the new routine into
SPHLIB.LIB and relink to create a new executable.
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3.0 TECHNICAL GUIDE

3.1 INTRODUCTION

This is a summary of the numerical and physical approximations and algorithms
currently implemented in the SPHC code at AMRC. As the code is developed, this
document will change accordingly. Further details on many of these techniques, as well as
alternate approaches, can be found in the SPH literature.

3.2 VARIABLE SMOOTHING LENGTH

For problems involving density changes of more than a factor of 3, a variable smoothing
length must be used. The intention of such a scheme is to vary the size of individual
particles in much the same way as a Lagrangian grid. Two approaches have been tried to
date:

1. Nearest neighbor: here at the beginning of the hydro step, the smoothing length of
each particle is set to the distance between the particle and its nearest neighbor.
This is a foolproof method, but has the following problems: 1) either the new h is
computed in an additional N2 loop at the beginning of each step, or it is computed
during the previous step and needs to be saved for the next step, thus entailing
extra time and/or storage, 2) particles may pair up, with no further interactions,
3) the repulsive force between adjacent particles may be too big, causing
oscillations.

2. Density scaling: here the smoothing length is scaled directly to the density change
raised to the power (-1/dimension), resulting in a smoothed version of the above
algorithm. The problem here is that the method may be too smooth, allowing
particles to "stack" at a point with no repulsive tendency, and, as observed in one
instance, there is no reason why a single particle cannot go to the zero-size/infinite
density limit. This behavior can probably be avoided be careful choice of initial
conditions.

A third approach has been implemented by W. Benz:

3. We write the time derivative of h: dh/dt in terms of d(rho)/dt:

dh/dt = (-l/d) (h / rho) d(rho)/dt
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and use:

d(rho)/dt = -rho Div( v).

Here d is the dimension of the calculation, and v is the particle velocity. T.is
allows us to integrate h as an additional equation in the Runge-Kutta computation.
The advantage here is that h now is updated in step with the other variables, and
the Runge-Kutta error control keeps dh/dt in check automatically. This produces a
more stable variation, avoids overshooting in the density, and performs better in
general than the other approaches.

The current algorithm in SPHC consists of three steps: 1) upon problem initialization,
the user sets the smoothing length of each particle in sphinit 0 , 2) using this guess to
find neighbors, on the first step of a problem the smoothing length is reset to the
nearest-neighbor value, and 3) during the computation, the smoothing length of each
particle is scaled by the density.

We intend to try switching to the Benz scheme in the near future.

3.3 PERFECT GAS EQUATION OF STATE

When part[i].mat-io = 0 for any particle, the perfect gas equation of state is selected.
This option activates the use of three global parameters:

Gamma = Cp / Cv = the ratio of specific heats,
GammaP = the polytropic index (defined below), and
Mu = the mean molecular weight (A / (Z+1) for the fully ionized case).

The equations used in eos 0 are:

P = (R /Mu) * rho * T, and
T = (R / Mu) * (Gamma - 1) * E,

where R is the gas constant. The inverse of the first equation is used to generate the
initial energies from specified temperatures.

The polytropic gamma is used as follows: we wish to specify a constant overall specific
heat:
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dQ/dT = C = constant.

so

dE/dt = dQ/dt - P dV/dt

becomes

dE/dt = (C/Cv) dE/dt - P dV/dt.

If we define

GammaP = (Cp - C) / (Cv - C),

then the energy equation can be written

dE/dt = ((1 - GammaP) / (1 - Gamma)) (-P * dV/dt).

and in the perfect gas case, you can easily show

P = K1 * rho GammaP, T = K2 * rho (G nmP-1), etc.

This is a generalization of the usual adiabatic perfect gas treatment. See Chandrasekhar:
"Stellar Structure", Chapter II, Section 3 for a detailed discussion of this approximation.
Useful special cases are:

C = 0 = > GammaP = Gamma = > adiabatic case as usual,
C = infinity = > GammaP = 1 = > isothermal case, all Gamma! = ,
C = Cp = > GammaP = 0 = > isobaric case,
C = Cv = > GammaP = infinity = > constant sp. volume (density).

The polytropic correction to dE/dt is performed in polyo, located in eos.c.

3.4 ANALYTIC EQUATION OF STATE

This section describes the analytic equation of state developed for laser/plasma
modeling. The intention is to obtain reasonably accurate estimates of the pressure,
temperature, and composition as functions of density and internal energy for a wide
range of energies and densities. The inverse function (energy as a function of
temperature and density) is also required for problem initialization. See the User-guide
for a list of eos parameter values.
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For the following discussion we assume that the temperature and density are given, since

this simplifies the formulae.

The Cold Curves: T = 0

The pressure and internal energy per gram at zero temperature are taken to be the
Grueneisen values (see Harlow and Amsden, LA 4700, p. 3):

Po = co' dV/ V0- sdV 2  , (2)

Eo = Po dV/2

where

dV = VO-V

VO = 1/solid density

= (-IG * (V/VO) + 1)/2 , (3)

-yG = Grueneisen gamma

c0 = solid sound speed if V < VO
liquid sound speed otherwise

The values for cO and VO are taken from the literature, and that of YG is usually found
in the Los Alamos Sesame Handbook, LA=10160-MS. fG varies inversely with density.
The value of "1, in these tables and the Sesame handbook is that at V = VO. The
(V/VO) multiplier to -IG eliminates the singularity at V = VO (s - 1) / s.

Note that P-0 and E-0 are exactly zero at V = V-0. These analytic expressions for E-0
and P-0 diverge significantly from the Sesame handbook representations of the cold curve
for values of V/VO < 0.5.
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The Pressure

In all cases, the pressure is taken to be the sum of the cold curve and a perfect gas
contribution:

P = PO + (R/ ) p T. (4)

Here R is the gas constant = 8.317e7 erg/deg/mole. The value taken for the mean
molecular weight, A, will be discussed below. P', is given by

P - Po(1 -T/T ), (5)

PO'= 0 T > T, ,

where TP is the critical point temperature. This ensures perfect gas behavior at
temperatures above the critical point.

At low temperatures and densities the pressure is negative (van der Waals attraction). In
some circumstances the magnitude of this negative pressure can be large, so for our
purposes the pressure is always limited to be larger than -1.e9 dyne/cm2.

Solid / Liquid State: T < Tjay

Here u = the molecular atomic weight, -1 = -fliq, and the energy is given by:

E = Eo + (R/ )T/('j - 1). (6)

The value for yliq is chosen to fit the SESAME energy variation in this region. It can be
near unity to simulate the various excitations, dissociation, and even ionization possible
in these temperature ranges. T,,p is usually chosen to correspond to the temperature at
which negative pressure disappears in the Grueneisen formula discussed above. This
temperature is somewhere between the STP vaporization temperature and the critical
point temperature, as appropriate for a pressure-driven phase transition.
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Molecular Gas: T,, < T < Tdi,,

Here, as above, 4 = the molecular atomic weight, - = -y, , and the energy is given by:

E = E0 + (R/II)TI(-y - 1) + E,.,,. (7)

The vaporization energy, Evap, is taken to be the sum of the handbook values of the
melting and vaporization latent heats.

Atomic Gas: Tdi,, < T < T0,,

Here g& = the mean atomic weight, -1 = 1.6667, and the energy is:

E = Eo + (R/M)TQY - 1) + Eva, + Edits. (8)

The dissociation energy, Edit, is the handbook value. Note that the second term has
changed in value due to the switch in -1. This means that the various excitation energies
in the complex molecular state have all contributed to the dissociation process and are
no longer present in the atomic gas.

Ionization: Tow < T < T hih

Here -y = 1.6667, j, varies with composition.

The intention here is to eventually implement a non-LTE set of rate equations to handle
ioni7ation in the general case. For now, a very simplified model has been adopted. The
ionization energy is assumed to scale with the square of the mean atomic charge (or can
be specified), and increases linearly between TLo, and Thih, taken as 1 eV and 2 eV
Z24 . The mean molecular weight is chosen in such a way as to make the total energy vary
linearly with temperature as well. This facilitates inversion of the equation and results in
a physically reasonable rapid variation of IA at initial ionization, slower variation at
higher levels of ionization. Here

E = Eo + (RIA)TI(-y - 1) + E.G, + Edit + E,o (T). (9)

Note that an estimate of the number of free electrons per ion may be obtained from the
routine nfel( T, Z ) for physics applications.
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Fully Ionized Plasma: Thigh < T

Here -y = 1.6667, A = (mean atomic wt) / (mean atomic charge + 1), and the energy is:

E = Eo + (R/)T/('7 - 1) + Evap + Ed.. + Eion-tot. (10)

Adjustable Parameters

In this formulation the only free parameters are tliq and cOiq, whose values are chosen
by fitting to the low temperature region of the Los Alamos SESAME tables. The
following values are usually known, but may also be adjusted slightly to improve the fit
to the tables: T,, T&,,, T o, Th'gh, and I,.j.

Limitations

The cold curves used here are not applicable for pressures of over 1 Megabar in solid
material shocks. The ionization model is at present very crude, and does not include any
effects of density variation. The details of the solid/liquid/vapor phase transitions are
not treated. "Glitches" seen in the tables in this region do not appear in this
formulation, except at T.,o. Also the density dependence of the various transition
temperatures is ignored here.

3.5 PROBLEM GEOMETRY

The normal mode of computation on SPH is 3-dimensional Cartesian coordinates. One-
and two-dimensional runs are permitted as well by setting the global parameter
"dimension" = 1, 2 or 3. This affects the normalization of the kernel (see the routine
kernel.c), certain diagnostics, and the size of the restart dumps, but the computation is
always carried out in a full three-dimensional vector formulation.

In all cases, the normalization of the kernel is chosen such that its integral over all space
is unity.

Two other options are included for use in lower dimensionalities:

Spherical; on.sphere = TRUE:

For 1 dimensional problems only. The x coordinate becomes the radial "r".
The kernel is further normalized by (4 7r x2) to simulate a spherical shell of
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radius x, rather than an infinite slab. The origin is at x = 0. and a wall
boundary should be placed at that location.

The renormalization is not done in the kernel itself, but in the calling routine.
The reason for this is that the renormalization must correspond to the particle
mass that multiplies the kernel, in order to refer to the correct particle.

Note, in problem setup to achieve a constant density with uniform zoning the
radial weighing factor will need to be applied to the particle masses.

In this case if the smoothing length is variable the radial weight is also
applied here to remove the effect of geometry.

Note that the gradient is not affected by this transformation, but occurrences
of the divergence and curl will need to be modified.

Cylindrical; on.cylinder = TRUE:

For 1- or 2-dimensional problems. The modifications are identical to the
spherical case, except that the weighing factor is (2 7r x), and the x
coordinate becomes the radial "rho", while the y coordinate represents the
cylindrical "z". Thus the axis is always taken to be in the Y direction.

In the 1-dimensional case, we imagine a cylindrical problem that depends
only on the radial coordinate (cylinder seen end on). In the 2-dimensional
case, the solution can depend on the radial coordinate and on the coordinate
along the axis symmetry (taken to be 'y" in this code, usually referred to as
"z"). In both cases the solution is independent of the theta coordinate.

3.6 LASER DEPOSITION

The current version of SPE includes a laser deposition algorithm that is efficient and
quite accurate in most cases. In most laser-target models of interest the deposition of
energy is due to inverse Bremsstrahlung in the underdense material, together with
resonant processes that occur near the critical density. For the laser/target/ambient
problem, the physics can be divided into two regimes: 1) the underdense ambient
material, possibly pre-ionized, and 2) the hot target material, where the bulk of the
deposition occurs near critical. In the first case, it is sufficient to ignore absorbed laser
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energy and compute the deposition directly for each particle using the full area-weighted
laser energy as input. For the second, more care is needed, but we primarily need an
algorithm to identify the particles near critical density and distribute the laser energy
properly.

The present approximate scheme is implemented in the routine laser-dep0, and works as
follows: First, a density, usually 1/2 critical, is chosen as the "deposition density". On
each timestep, a linked-list is made of all particles that fall within the laser beam. A
"shadow-radius" (taken to be the smoothing length) is chosen for each particle, and
particles that are shadowed by "overdense" (density greater than the dep-density)
particles are removed from the list. Shadows are shaped as follows:

*****

* /\ *

I * I/\ *

X
I I
I I

I shad-I
I ow I

The shadows are properly shaped to converge on the laser focal point (see below). The
current algorithm involves selecting the particles in the laser beam, sorting them on
distance from the focal point, and removing the shadowed particles working toward the
laser. This operation is now written in vector form to allow changes in the dimension,
geometry, and laser f-number.

Of the remaining particles, the underdense are then heated according to the inverse
Brernsstrahlung formula (see AMRC-R-1031, pg. 45, Eq. 16), assuming small total
absorption in this region (0.1 percent is expected). The remaining laser energy is
deposited in the unshadowed overdense particles with uniform energy/mass (weighted by
the function Spot-prof0).

SPH allows the f-number of the laser to be specified, defined as:

f = focal length / aperture
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therefore, the laser beam half-angle of convergence is:

theta = arcsin ( I / (2f) ).

This is implemented by increasing the spot area by the appropriate factor in both the
particle-list code and the deposition code. This algorithm should work behind the target
and beyond the focal point as well. Taking the f-number to be very small results in
illumination over a complete sphere.

The deposition is computed via the fraction of laser energy absorbed. The routine
laser-pulse() returns the laser power in ergs/cm 2/sec, laser-energy is the energy delivered
in the current timestep, und-energy is the energy deposited in the underdense region, and
crit-energy is the remaining energy. For the 2D and 3D cases, the energy deposited in a
particle scales as the fraction of spot area subtended in the underdense region.

3.7 NOH SHOCK FOLLOWING TECHNIQUE

This option is needed to prevent spurious heating in problems involving hypersonic
collisions of different regions, or a region and a wall boundary. It is invoked by setting
the artificial viscosity parameters gl and g2 in the "Control Parameters" menu
(generated in eos.init 0 ). The normal values for these parameters are:

normal problems - gi = g2 = 0,

problems with collisions - gl = 0.5, g2 = 1.0 .

These parameters turn on linear and quadratic artificial thermal diffusion terms in the
viscosity treatment. If either of the parameters are non-zero, the flag on.av-diff is set to
TRUE in eos.inito, the default value is FALSE. The computation of the diffusion
coefficient is done in hydro(), using the quantity rhodelv[] computed in rho-compute(.
The coefficient is added to part[i].thm-con for use by the routine thm-diffo.

For complete details on the technique, see Monaghan: "SPH and the Shocks of Noh",
(preprint, 1988).

3.8 ELECTRON THERMAL CONDUCTION

A simple explicit implementation of heat conduction via electron thermal diffusion
including a flux limiter has been added. The option is controlled by the flag on.elect-diff,
set in setupO, menu 1.
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The computation of the coefficient is done in e-diff0 using the formula

t, = 3.58e- 5* (nfe/Z) T 5 , (11)

where nfe is the number of free electron/ion (gotten from nfel0), Z is the atomic
charge, and T is the temperature. The coefficient is added to part~i].thm-con for use by
the routine thmdiffo. Since the thermal flux is not available in the current diffusion
package, the flux limit is crude and probably overly conservative. This will be fixed in a
future upgrade.

3.9 BOUNDARIES

The boundaries in the present implementation of SPHC are controlled by several
structures, all specified in sph.h, verify the current version for changes. Type and number
are given by the following declarations:

/* boundaries */
#define MAX-BOUNDARIES 6

/* boundary types */
#define WALL 1
#define PISTON 2
#define PER 3
#define REFL 4
#define FLOW 5
#define AXIS 6
#define FIXED 7

/* Periodic types - several can be on at once

#define X2 1
#define Y2 2
#define Z2 4

The parameters used during the computation are controlled by the following structures:

struct bdrylist (
struct vector coord;
int num;
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int crossed; /* TRUE - particle is on the wrong side of boundary */

/* will be returned to problem space according to boundary

conditions by check-bounds */

struct bound {
int type;
/* for Periodic only */

/* Periodic boundaries must be two parallel boundaries in X.Y. or Z

No checking is performed to verify consistency.
the offset is subtracted from the appropriate boundary */

int per-type: /* 2X. 2Y, 2Z */
struct vector per-offset;

The logic controlling the boundary computation is given by the detailed flow chart in the
SPH Programmer's Guide.

The details of the WALL boundary have been discussed by Campbell in the report
MRC/ABQ-R-1100. In this case we restore the boundary terms usually dropped in the
integration by parts. This results in a boundary acceleration that is given by

dv,/dt = 2 (PWip) W r,, /I,;. (12)

Where Wiy is the kernel (note: not the gradient), and r,, =r,- r,. In addition the
boundary contributes to the density of a nearby particle as if a mirror particle were
located at the boundary. A particle approaching the boundary also feels a viscous
interaction, needed to handle shock reflections. The boundary force is always normal to
the boundary.

The PER, AXIS and REFL boundaries are handled using ghost particles. In the case of
periodic boundaries, a particle near the wall interacts with particles in its own vicinity, as
well as those near the opposite boundary. This is accomplished at present by copying
each of the ghost particles into particle location "0" as needed, so additional memory for
the ghosts is not needed, but some computational overhead is involved. The reflecting
boundary is similar, except that the particle sees a reflection of all nearby particles across
the boundary. At present, the AXIS boundary is taken to be WALL.
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The planned PISTON and FIXED boundaries will have specific parameters attached to
the boundary, which may be moving. The planned FLOW boundary will allow particles
to travel through the boundary without further acceleration or heating, to be dropped
from the problem beyond 2h.

3.10 PARTICLE DIVISION AND COMBINATION

SPH is a Lagrangian technique. This is advantageous for problems with small density
gradients, or those in which only the high mass regions are of interest. In some cases
other types of problems can be handled in a Lagrangian scheme by varying the particle
mass in different parts of the problem. This can lead to problems, however, if mixing
causes the different mass particles to change position. In general, a Lagrangian code
needs some means to divide and combine cells dynamically during the computation. This
note describes such a scheme for SPH.

There are two situations requiring the addition or subtraction of particles from an SPH
run in progress. The first is that of a problem with inflow or outflow boundaries. This is
primarily a bookkeeping problem. If a particle is to be added to the list, the particle
count in incremented and the new particle's characteristics copied into the new structure
location. If a particle is to be deleted, the last particle in the list is copied over the
structure location of the particle to be dropped, and the particle count decremented. In
both cases care needs to be taken to ensure that adjacent particles are not strongly
affected by the change.

The second type of problem is one in which the local density changes are large, and
spatial resolution needs to be maintained at a constant level. A rarefaction wave is an
example of this type, where the density decreases exponentially in time and space. As
the density decreases, the particles move apart, and if the smoothing length is held
constant, the particles soon separate and the computation is at an end. If the smoothing
length is allowed to vary, the computation can proceed, but resolution becomes
increasingly poor at low densities. In order to maintain the needed resolution at low
densities, the particle size at the initial density must be made inordinately small, which
decreases the Courant time and greatly increases the expense of the computation.

3.10.1 Division:

A solution to this problem is the following particle divide algorithm, which depends on
the dimension of the computation. In all cases, a threshold is specified for the largest
allowable particle size. When this threshold is reached by a particle, it is divided as
follows:
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1D: Here the particle is divided in half, each offspring having half the mass
and half the smoothing length of the original. The two offspring are placed
with a spacing equal to their new smoothing length, centered on the old
particle position.

2D: Here the particle is divided into three equal portions, each with 1/3 the
mass and smoothing length equal to 1/sqrt(3) = 0.577 of the original. They
are placed at the vertices of an equilateral triangle with sides equal to the
new smoothing length, centered on the old particle position, and with a
random orientation.

3D: Here the particle is divided into four equal portions, each with 1/4 the
mass and smoothing length equal to 1/cbrt(4) = 0.63 of the original. They are
placed at the vertices of a tetrahedron with sides equal to the new smoothing
length, centered on the old particle location, and with a random orientation.

In all cases the velocity of the new particles are chosen to be equal to the velocity of the
parent particle, thus exactly conserving mass, momentum and energy. This prescription
replaces the parent particle with a set of offspring that approximate the original in size
and shape, and thus cause minimum disruption to neighboring particles.

3.10.2 Combination:

Recombining particles is a more difficult operation, because of the greater likelihood of
disruption of the immediate vicinity. In two identifiable cases, however, the
recombination is easily done:

1. If two particles somehow approach each other much more closely than a smoothing
length, and share the same velocity, they may never separate if a flat-topped kernel
is being used. In this case the two particles may safely be combined into a single
particle with the sum of the masses and a velocity equal to that of the original
particles.

2. If a small mass particle finds itself near one of much larger mass (within a
smoothing length, say), then it may safely be absorbed by the larger particle with
little effect on the computation. This type of combination is probably needed to
avoid numerical difficulties in mixed regions.
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In the general case of recombination whenever the resolution is too great in a given
region a more subtle scheme is needed. One approach would be a redefinition of all the
particle masses, positions, and velocities in a region of space. Another approach might be
to combine the particles in groups of two or three that satisfy a criterion for least
disruption of neighbors. Finally, it may be possible to allow some flexibility in the
recombination and iterate until a smooth, conservative solution is obtained. None of
these schemes have been tested at present.

3.10.3 Examples:

Figure 1 shows the result of a division operation in an expanding fluid. Notice that the
"before" and "after" shaded areas are nearly equal. The densities of the three particles
after the division are slightly lower than that of the original, but this depends on the
surrounding particles as well.

II

-4

EXPANSION >

BEFORE DILUISION

S.s1. . Z.A 2.S -.

Y

Figure 1. R-1237

Figure 2 shows the subsequent evolution of this test, in which an expanding gas
accelerates a high-density foil through a short tube. The computation starts with 82
particles, and ends with 450. Adequate resolution is maintained at all stages of the
computation in spite of extreme low densities in the rarefaction regions. No
recombination was used in this computation, and a minimum mass of 1/10 the original
was specified.

62



I T I I T I I I I I

AFTER DIVJISION4

y7

x .._t 13 S1. Sz aS3-

R-1237
Figure 2.

3.10.4 Discussion:

This discussion demonstrates that particle division is possible and useful in SPH. The
algorithm presented here is rather crude, and refinements can be added to suit the
problem. Here the division is triggered by a lowered density. A more sophisticated
algorithm, easily implemented, would divide particles in regions of increased gradients.
This would allow a detailed tracking of shocks, for example. Obviously, more complicated
schemes can be concocted, based perhaps on the currently used ALE adaptive grid
algorithms.
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4.0 FUNCTION DIRECTORY

4.1 INTRODUCTION

This is an alphabetical list of all the major functions in the SPIIC package. See the
Programmer's guide for a standard template to use for each entry. In most cases, the
listing is by routine name, but in some cases (the vector routines, for example), entire
modules are included as a single entry.

4.2 ALPHABETICAL LIST OF ALL SPHC FUNCTIONS

BURN MODULE: burn.o

functions: burn.yield()
burn-part ()

s igmav-bar ()

type: void

arguments: for burn.part()
mat.no material number, only 6 (DT) and 10 (DD) are valid

rho particle density (gm/cc)

mass particle mass (gm)
temp particle temperature (Kelvin)
dt time step for this cycle (sec)
neutrons number of neutrons produced by this particle

during this cycle (returned)
for sigmav.bar()

mat particle material (DD or DT only)
temp particle temperature (KeV)
svbar particle <cross-section * velocity> (cm**3/sec)

(returned)

calls: each other

principal global variables:
on.burn burn flag
total-neutrons sum of neutrons over all particles over time
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description:

This is the neutron yield module for DD and DT reactions (burn).
Burn.yield( is simply a loop over all particles each time step to sum their
individual contributions. Burn.part( calculates the number of neutrons
produced by an individual particle. Sigmav-bar 0 calculates <cross-section *

velocity> for DD and DT reactions at the particle temperature.

references:

Sigmav-bar( is an analytic fit to the cross-section curves found in S.
Glasstone and R. H. Loveberg, Controlled Thermonuclear Reactions, Van
Nostrand Reinhold, 1960, page 19.

check-boundaries C)

module: sph-bounds. o

type : int

arguments: none

calls: sph.bc()

description:

Checks each particle to see if any have left the problem space and moves (by
reflection or periodicizing?) them back into problem space.

copy-particle ()

module: sph.bounds ()

type: int

arguments:
i source particle number
j destination particle number
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description:

Copy a particle to another slot.

delete.partic le ()

module: sph-utl()

type: void

arguments: i particle number

calls:
copy-particle ()

description:

This routine copies particle Npart over location i and decrements Npart, thus
dropping particle i from the computation.

divide.partic le ()

module: sph-utl()

type: void

arguments: i particle number

calls:
copy-particle ()
vector routines
write.part ()

description:

This routine will substitute for particle i a number of offspring depending on
dimension (1D-2, 2D-3, 3D-4), and update Npart accordingly.
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divide-particles()

module: sph-utlO)

type: void

arguments: none

calls:
divide.partic le ()

description:

This routine loops over all of the particles, tests if h > max.h (smoothing
length), and if so calls divide-particleo.

do-bounds ()

module: sph-bounds o

type : int

arguments: partnum - a particle to interact with the boundaries.
do-wall() - a function to compute wall-particle interactions.
doghost() - a function to compute particle-particle

interactions using ghost particles.

calls:
sph-bc() - user routine to check for boundaries
dorefl() - which calls do-ghost()

do-per() - which calls do.ghost()
do-wallC)
get-refl-list ()
get-per.list ()
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dojhydro()

module: hydro.o

type : void

arguments:
i* j particle numbers for interaction

calls:
vect3 routines

kernel()
art-visc ()

principal local variables:
termi.j P/rho^2 for particle i, j
av.ij artificial viscosity ij
termij termi + termj + av-ij
multi.j additive term to acceleration of particle i, j
terml.2 linear and quadratic terms in Noh conductivity

description:

This routine does the hydrodynamic contributions to accel, dedt, and
thmcon. Note that the renormalization of the kernel for spherical and
cylindrical coordinates are done here to allow the proper adjustments to be
done for the ith and jth particles.

references:

See Monaghan: "Shocks of Noh" for the conductivity term.

do.per()

module: sph-bounds. o

type : int
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arguments: i - a particle number.

part-list - list of neighbor particles
bdrycoord - the point nearest part-coord on the boundary in

question
do-ghost() - particle-particle function

calls: copy-particle ()
do-ghost C)

description:

Wraps each particle on part-list around the periodic boundary and interacts
particle i with the reflections using do-ghost(.

do-refl ()

module: sph-bounds o

type: int

arguments: i - a particle number.

part-list - list of neighbor particles
bdry-coord - the point nearest part-coord on the boundary in

question
do.ghost() - particle-particle function

calls: reflect-particleo)
copyparticle ()
do.ghost()

description:

Reflects each particle on part-list and interacts particle i with the reflections
using do-ghost).
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do-rho

module: rho.o

type: void

arguments:
i.j particle numbers to compute

calls:
vec3 routines
kernel()

description:

Compute the density contribution of particle i to particle j and vice-versa.
Also compute the ij the term of rhodelv.

dropparticles C)

module: sph.utl()

type: void

arguments: none

calls:
sph.bc C)
delete-particle ()

description:

This routine checks all Npart particles for deletion by calling sph-bc() and
looking for a return value of -1. If obtained, the particle is deleted from the
computation.
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dt.compute C)

module: SPHCompute. o

type: void

arguments: none

calls: vect3 routines

principal global variables:
dtphys "physics (Courant) timestep"

dtflow flow timestep structure
dthyd hydro timestep structure
dtgrav gravity timestep structure
dtthm thermal diffusion timestep structure

description:

This is the timestep computation. First the various "physics" timesteps are
computed as required by an explicit integration. Introduction on new physics
in the code requires modification of this section. The minimum of these is the
"physics timestep" dt-phys. The screen summary is then printed. Now the
actual timestep is computed using the Runge-Kutta error criteria, as well as
limits based on the physics timestep. If a retry is indicated, the variable and
parameter resets are done here. All the logic for special cases, such as
relaxation and no dt control are done here as well.

e.compute ()

module: SPHCompute. o

type: void

arguments: none

calls: vect3 routines

principal global variables:
k-e kinetic energy
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t-e thermal energy
p.e potential energy
enO initial total energy
en.tot current total energy

principal local variables:

eO-tot initial energy including sources
check energy check (M)

description:

Here we compute the total energies for t';e current configuration, and perform
the energy check by direct comparison with the initial energy. The result is
printed to the screen.

ediff ()

module: sph-utl.o

type: void

arguments: none

calls: nfel()

principal global variables:
Thm-mult thermal conductivity multiplier (default=l)
Flux-lim flux limit parameter (default = 0.2)

principal local variables:
t temperature (K)
mat material number
nfe number of free electrons/ion
ne number of free electrons/cc
z atomic charge
a atomic number
tc thermal conductivity

f.lim thermal flux limit

73



description:

Compute the thermal electron conductivity

references:

Spitzer, Cox and Guili "Principles of Stellar Structure", Sect. 16.123.

EOS MODULE: eos.o

functions: eos-init()
eos-pe ()
nrg()
eos.pt C)
t.nrg()
mat.lookup ()
art-visc()
poly()

type: void

arguments:
mat input variables: material, temperature (K).
temp density (g/cc). and specific internal energy (erg/cc)
rho
energy

press pointers to returned variables: pressure (dyne/c=2).
ener energy (erg/cc). sound speed squared (cm/s)-2. and
csq debug flag
dbg

calls: each other

principal global variables:
Mu these used for perfect gas case only: mean mol.
Gamma weight. ratio of specific heats. polytropic gamma
GammaP
eos tables: see Tech-guide notes on eos
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description:

This is the equation of state package. In its present form, it is designed to be
a simple semi-realistic treatment over a wide range of parameters. At
solid/liquid densities it uses a Grueniesen analytic formulation, which is faded
out until at the triple point the form is fully perfect gas. The overall equation
uses 15 parameters, most of which are physical constants of the material, but
some of which are adjusted to obtain a better fit to the LANL SESAME
tables.

A separate, but related routine is nfelO.

references:

See the comments at the top of eos.c, and the sections in the User Guide and
the Technical Guide for details.

eos.compute ()

module: SPHCompute. o

type: void

arguments: none

calls: eos.pe()
eos.pt()

description:

This is the equation of state front-end routine. It is expected to undertake all
actions necessary to complete the computation of specific energy, pressure,
temperature, and density. Presently, it calls either the "pe" or the "pt" eos
lookup, does some simple data checks, and loads the sound speed.
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finish()

module: run-check.o

type: void

arguments:
ierr exit code, 0 normal, I a other

calls: write-step()

description:

This is the official exit i/o routine. It writes a dump to err-dump if ierr != 0,
prints a summary of run information to the screen, and returns to the calling
program.

getnbr-list ()

module: "tree" (see NEIGHBOR MODULES)

type: structure particle *

arguments:
i particle #. (if reversible), 0 (otherwise)
loc pointer to location vector
h smoothtng length

calls: neighbor entry routine

principal local variables:
list pointer to last particle in the list

description:

This routine returns a list of particle neighbors, given the location and size of
any particular particle. In addition, provision is made for "reversible"
processes (conservative processes requiring only the above-diagonal entries in
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the particle-particle matrix) by specifying a particle number. If this
parameter is zero, all neighbors are returned. The particle itself is always
included in the list.

getper.list C)

module: sph.bounds. o

type : int

arguments: i - a particle number.
part.coord - the coordinate of a point in problem space
smin - smoothing length around coordinate
bdry-coord - the point nearest part-coord on the boundary in

question

calls: get-nbr-list()

description:

Wraps part-coord to matching boundary and uses get-nbr-list to find the
neighbors to reflect.

getref l-list ()

module: sph-bounds. o

type : int

arguments: i - a particle number.
part-coord - the coordinate of a point in problem space
sm-ln - smoothing length around coordinate
bdrycoord - the point nearest part-coord on the boundary

in question

calls: get-nbrlist C)
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description:

Reflects part-coord across the boundary and uses get-nbr-list to find the
neighbors to reflect.

gravity ()

module: hydro.o

type: void

arguments: none

calls: vlino)

principal global variables:
on.grav set if gravity is on
gray vector specifying the constant acceleration

description:

Apply a constant gravity acceleration to all particles. The magnitude of the
acceleration is set in the input decks or menus.

grid-gen()

module: grid.gen. o

type: void

arguments:
part.init pointer to a function that initializes particles

located in the sph-init.o module

dir a 0... align hex grid along x axis
a I.. .align hex grid along y axis

calls: "part-init" routine at each grid point
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description:

Grid generator. User requests a certain type of grid covering a specified
volume of space, this routine will determine the spacing and particle mass
required and call the "partinit" routine once for each grid point to allow the
user to initialize the problem in a completely general way. Details:

in iD: generates a uniform spaced grid
in 2D: generates a hexagonal grid. spacing = h.spacing
in 3D: generates hex grids in all cartesian directions

note: this is not a close-packing solution

in sph-initO must set the following quantities:
Grid.gen = TRUE

Grid-standoff = amount to stand off from boundary, units of
spacing

Space.adjst: use to adjust particle spacing (multiplies it)

in sphinit do the following
Grid-type = 1.. .rectangular. = 2.. .hexagonal
Rho: density of material
Volume: volume of current grid
Gridnpart = number of particles desired in current grid
Maxx. Minx. Maxy. Miny: define a cube containing the current grid

call grid-gen( "part.init" ) for first grid
if return == 0. abort
if return == 2, mem exhausted

reset any parameters for another grid
call grid.gen( "part-init.2" ) for second grid

repeat for additional blocks, reset all changed parameters

in "part.init" do the following things:
1. test Grid.x, Grid.y. Grid.z. if in desired volume, if not

return();

2. else increment: Part-num++
initialize part coord - Grid.x. Grid.y. Grid.z. mass = Mass
initialize part veloc, temp. mat-no

3. return(l)
4. if any fatal errors occur, return(0)
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h.compute 0

module: SPHCompute.o

type: void

arguments: none

calls: get-nbr-list()
vect3 routines

description:

This routine performs an explicit update of the smoothing length. Note that
an estimate of the smoothing length must be set in the sph-init() routines to
determine the neighbors for the first pass. A special algorithm is used the
first time through: the distance to the nearest neighbor is taken to be the
smoothing length of the particle. Subsequently, the smoothing length is scaled
with the -1/nth root of the density, where n is the dimension of the problem.

hydro()

module: hydro.o

type: void

arguments: none

calls: get-nbr-list()
do-hydro ()
do-bounds ()

principal global variables:
on.hydro called if TRUE

pzincipal local variables:
termi.j P/rho^2 for particle i. j
av-ij artificial viscosity ij
termij termi + termj av.ij
multi.j additive term to acceleration of particle i. j
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terml.2 linear and quadratic terms in Noh conductivity

description:

This is the controlling routine to compute the hydro forces and heating. See
do-hydro 0 and hydro-wall().

hydro-wall ()

module: hydro.o

type: void

arguments:
i particle number
bd-coord boundary coordinate

calls: vect3 routines
kernel()
art-visc ()

principa) global variables:
on.hydro called if TRUE

description:

This routine computes the interaction between a particle and a wall.

I/0 MODULE: sph.io.o

functions:
file-inito(

write.step()

readdump C)
write-param()
read.param C)
write.part C)

type: void
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arguments:
appnd append to existing file if TRUE
file file name for write
hist write history if TRUE
npart if != 0 write particle npart only

calls: plotmac (external shell file)

dscription:

These are the i/o routines for the SPHC package. They come in three flavors:
1) write and read all problem parameters, 2) write and read all particle
variable values, and 3) write a summary of a target particle to the screen.
Most calls to these routines come from run-checkO.

KERNEL MODULE" kernel.o

routines: ker-setup()
kernel()
norm()

type: void

arguments:
rdiff vector from kernel center to test point
h smoothing length
W kernel value (returned)
delW gradient( W ) (vector, returned)

calls: vector routines

principal global variables:
Ker.name. "W4" identifier for titles
Ker.opt-space - 1.; optimum spacing in units of h
Ker.cutoff = 2.; zero value radius in units of h

principal local variables:
nn dimension dependent normalization factor

82



z r/h
dsize length of gradient vector

description:

This is the kernel function. Ker.setup 0 sets the kernel characteristics and
name, kernel() returns the value and gradient of the kernel, given the
smoothing length and the radius difference vector. Various kernels are
available. The analytic computation should be replace by a table lookup at
some future time for efficiency.

references:

See Monaghan, 1985, J. Comp. Phys. 60, 253.

LASER MODULE: laser.o

functions: laser-setup()

laser.spot ()
laser.dep C)
laser-pulse()
bremk()

type: double: spot.prof()

others: void

arguments: for bremk()
ptr pointer to current particle
kb pointer to bremsstrahlung abs coefficient

(returned)

calls: each other
nfel()

principal global variables:
on.laser laser flag
E-laser total laser energy (erg)
Fwhm full width half-maximum (s)
Spot.rad laser spot radius (cm)
Wavelength laser wavelength (cm)
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F-number laser f-number
Bremfac multiplier for bremsstrahlung (def=0.5)
NfeO preionization fraction at 1 cm from target

laserpwr laser power (erg/a)
laser-energy laser energy / timestep (erg)
laser-etot total deposited energy to date
laser-utot total underdense deposited energy to date

description:

This is the laser deposition module. Spot-prof 0 defines the profile of energy
across the laser spot, laser-pulse 0 defines the temporal pulse shape of the
laser (currently linear symmetric), laser.setupO generates the menu to set the
various global parameters, bremk 0 computes the bremsstrahlung absorption
coefficient, and laser-dep0 does the deposition.

The laser deposition works this way: a linked-list of particles in the laser
beam is first compiled, sorted on the X coordinate. In the overdense region,
shadowed particles are dropped from the list, leaving only the critical surface
particles. In the underdense region energy is deposited according to the
fractional area of the beam intercepted, and the local intensity of the laser
light, assuming only slight deposition in this region. The energy not deposited
in the underdense region is distributed among the critical surface particles by
mass. This prevents thermal numerical instabilities, and promotes uniform
heating at the critical surface.

references:

Johnston and Daw :on, 1973, Phys. Fl. 16, 722 (brem). User Guide, Technical
Guide.

miss()

SEE: NEIGHBOR MODULES

octree()

SEE: NEIGHBOR MODULES
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NEIGHBOR MODULES

module: miss.o
octree.o

functions get-nbr.list ()
init-nbr ()

cleanup.nbr()
module entry function
utility routines

description:

These modules locate the particle neighbors. The particular technique is

chosen at link time according to the directions in Makefile. The physics
routines cal the "nbr" functions to initialize, get the neighbors, and restore
the routines. The two currently implemented are "miss": a straight N2

algorithm (looks at all other particles), and "octree", an NlogN tree scheme.

See get.nbr-ist() entry for details.

nfel()

module: sph-utl.o

type: double

arguments:
t temperature (K)
z atomic charge

principal local variables:
nfe number of free electrons per ion (returned)

description:

Compute the number of free electrons per ion as a function of the temperature
and atomic charge of a species. Currently, a very simple smooth fit is used,
linear in the logs. Note that this function is used by physics routines, but is
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NOT used by eos( to compute the ionization energy (eos uses its own model).
This all needs to be made consistent when accurate tables are implemented.

reflect.particle C)

module: sph.bounds ()

type: int

arguments:
part.num - number of particle to reflect
bdry.num - boundary to reflect about

description:

Reflect a particle's position and velocity with respect to a given boundary.

rho-compute C)

module: rho.o

type: void

arguments: none

calls: vect3 routines
get.nbrlist C)
do_ rho C)
do-bounds C)

description:

Compute the density for all of the particles. Apply geometrical corrections if
needed. Add the contribution due to the walls, if any.
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rho-wall

module: rho.o

type: void

arguments:
i particle number

bd-num boundary number

calls: vect3 routines
kernel()

description:

Compute the wall contribution to each particle's density.

rhs ()

module: sphc.o

type: void

arguments: none

calls: vzero()
rho-compute ()
eos.compute ()
sph-bounds ()

gravity()

hydroo)
e-diff ()
thm-diff ()

laser.dep ()
burn-yiela()

poly()
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description:

This routine is intended to do all the computations to complete the
right-hand-sides of the equations (accel, dedt...). It includes all of the physics
computations. It is called twice per timestep by sphc0, once for each
Runge-Kutta sub-step.

run.check()

module: run-check.o

type: void

arguments: none

calls: sph.setup()
writepart ()
write.step()

finish()

description:

This routine is the interrupt handler for SPHC. Called once per timestep, it
checks to see if any keyboard input is waiting to be processed. In the
following cases, action is taken:

*' - help
lp' - pause for input or restart

W - debug summary this step
"w' - write to file this step

In addition, it checks for time and step number dump conditions and executes
them if appropriate. Finally, it checks for "run over" status and exits if found.

The following codes are returned:

0 - error
1 - normal
2 - keyboard interrupt
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3 - run finished, normal
4 - run finished, error

5 - end of relaxation

smooth-temp ()

module: sph-utl.o

type: void

arguments:
len desired smoothing distance in units of h

calls: init-nbr()
vect3 routines
get-nbrlist ()
kernel()
c leanup-nbr ()

description:

Smooth the initial temperature distribution. Uses the standard kernel, but
through the formula

<Ti> (Tj * Wij) / (Tj)
j 2

rather than normalizing by mj/rhoj under the summation. The argument len
is used simply as a multiplier on the smoothing length in case a smooth
sequence between no smoothing and full smoothing is desired.

sph-bc

module: sph-init .o

type: void

arguments:
coord = position of particle
h = smoothing length of particle
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return:
*numb a number of boundaries within 2h

must be <= 5
bdry[l->numb] = location of closest point on each boundary

boundary number
flag if particle has crossed boundary

calls: none

description:

This user supplied routine returns information as to which particles are near
the boundaries, which boundaries they are near, and whether any particles
have crossed a boundary. In addition, the closest point ON each boundary is
returned.

sph-default C)

module: sph-default.o

type: void

arguments: none

calls: ker-setup()
sph-initO ()
laser.setup ()

description:

This routine sets all of the default values for variables and parameters. It also
calls any default routines that are local to individual packages. It then prints
the problem title to the screen.

sph.random C)

module: sph-utl.o

type: void
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arguments: none

calls: system: rnd()

principal local variables:

h smoothing length

description:

If selected in sph..setupo, this routine adds a small random perturbation to
the position of each particle. Usually, a 5-10 percent random component will
prevent unnatural symmetries in the particle positions, and allow the "grid"
to more easily adaot.

sph_.setup ()

module: sph.setup. o

type: void

arguments: none

calls: param routines (menu)
readparam()

system:
calloco. allocsegmento. set-extra-seg=ento()

readdump ()
eos-init()

sph_.init ()

sphrandom ()
file-init()

description:

This is the main problem setup routine. It obtains the setup information from
a series of menus and/or data file reads (if restart files are selected). It then
either calls sph-init 0 or reads the main restart file for particle initialization.
It initializes the files for hi3tory and future restart dumps. Faunal, it prints
the initial timestep header to the screen.
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sphcO

module: sphc.o

type: main

arguments: r run from restart dump
p read restart params, then execute setup routines

calls: sph-default ()
sphsetup ()

init-nbr )
rhs()
hcompute C)
ecompute ()
dtcompute ()
run-check()
start-step C)
laserdep()
stepi()
step2()
sph-bc o)
cleanup.nbr 0

principal global variables:
see sph.h

description:

This is the "main" for the sphc package. It handles the command-line
parameters, call the setup routines, and supervises the overall timestep-loop
computations.

STEP MODULE: step.o

r,:utines: startstep (

stepl ()
step2()
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type: void

arguments: none

calls: vect3 routines
write.part 0

principal global variables:
struct old-part previous timestep values
retry true if step is a retry
on.relax
eq.relax see "run modes" in User Guide
etime elapsed time
dt timestep (sec)

principal local variables:
F1l. etc. constants needed in RK12 scheme

description:

These routines implement the RK12 Runge-Kutta integration scheme. Call
start.step( to initialize the timestep, stepl() to advance the first half-step,
and step2 to initialize the final half timestep. Any additional equations need
to be added to the loops in the obvious fashion. Conditional tests in these
routines also implement the relaxation options.

references:

Fehlberg: NASA report # TR-R-315.

thermo()

module: sph.o

type: void

arguments: none

calls:
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rho-c.ompute 0
eos.computa ()

description:

This routine "fills in" the density, pressure, temperature, and other derived
variables from the basic state variables, r, v, h, and energy.

thm-diff ()

module: thmdiff.o

type: void

arguments: none

calls: get.nbr-list()
vect3 routines
kernel ()

description:

Compute the thermal diffusion term in the energy equation, given the
thermal conduction coefficient (computed elsewhere). Currently, this routine
is called if either the Noh shock-following method, electron thermal diffusion,
or radiation diffusion is turned on. The equation is de/dt = (1/rho) div
(thmincon grad e) = -(1/rho) div ( thm flux ). Note that the derivatives are in
terms of the energy rather than the temperature. The physics routines must
add their contribution to the particle variable old-partil.thm-con, this routine
then computes the flux and the overall contribution to de/dt.
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VECTOR ROUTINES - vect3.o

description:

This is the core vector operations module. The individual routines are listed
below, along with a brief explanation. All vectors are 3-dimensional, as
defined in sph.h, and are passed are pointers. The variable "sc" is a scalar,
type double.

/* vect3.c -- 3D vector functions *

vzero( vi ) /* ----------------------------------------zero out a vector *
veq( vi. v2 ) /* -------------------------------------------equate vi1 v2 *
vsum( vs. vi, v2 )--------------------------------------vs V1 v+ V2
vdiff( vd. v1, v2 )--------------------------------------vd =vi -v2 *
vav( vd. v1. v2 )------------------------------------vd = (vi + v2)/2 *

vmultC vi. sc. v2 ) /* --------------------------------------v1 = sc *v2 *

vlinC vi. sc, v2 )----------------------------------v1i v1i sc * v2 *

vlin2( v1. vO, sc. v2 ) /* --------------------------------v1i vO + sc * v2 *
double dot-.prod( vi. v2 ) * /--------------- return dot product of v1, v2 *
cross-.prod( vp. vi. v2 ) /* ---------------------------------vp = vi x v2 *

double vect..len( v ) /* ----------------------compute length of vector v
double vect-.len2( v ) /* ------------compute square of length of vector v

/* the following routines are needed for extra seg computations only */
x-.veqC xvi. v2 ) /* ------- extra seg version ------------- equate xvi = v2 s

x2..veqC vi. xv2 ) * 1-------extra seg version ------------- equate vi = xv2 *

x-.vlin( vi. sc. xv2 )/* ------ extra seg version ---------vi vi + sc *xv2 *

x-.vdiff( vd, xvi, v2 ) * I------extra seg version ------------ vd = xvi -v2 *
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